MakeItFrom.com
Menu (ESC)

EN 1.4962 Stainless Steel vs. S30815 Stainless Steel

Both EN 1.4962 stainless steel and S30815 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4962 stainless steel and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 210
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22 to 34
45
Fatigue Strength, MPa 210 to 330
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 420 to 440
480
Tensile Strength: Ultimate (UTS), MPa 630 to 690
680
Tensile Strength: Yield (Proof), MPa 260 to 490
350

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 510
430
Maximum Temperature: Mechanical, °C 910
1020
Melting Completion (Liquidus), °C 1480
1400
Melting Onset (Solidus), °C 1440
1360
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
17
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 4.1
3.3
Embodied Energy, MJ/kg 59
47
Embodied Water, L/kg 150
160

Common Calculations

PREN (Pitting Resistance) 21
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 170
260
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 610
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21 to 24
25
Strength to Weight: Bending, points 20 to 21
22
Thermal Diffusivity, mm2/s 3.7
4.0
Thermal Shock Resistance, points 14 to 16
15

Alloy Composition

Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.070 to 0.15
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 15.5 to 17.5
20 to 22
Iron (Fe), % 62.1 to 69
62.8 to 68.4
Manganese (Mn), % 0 to 1.5
0 to 0.8
Nickel (Ni), % 12.5 to 14.5
10 to 12
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.5
1.4 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.4 to 0.7
0
Tungsten (W), % 2.5 to 3.0
0