MakeItFrom.com
Menu (ESC)

EN 1.4971 Stainless Steel vs. 336.0 Aluminum

EN 1.4971 stainless steel belongs to the iron alloys classification, while 336.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4971 stainless steel and the bottom bar is 336.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
110 to 130
Elastic (Young's, Tensile) Modulus, GPa 210
75
Elongation at Break, % 34
0.5
Fatigue Strength, MPa 270
80 to 93
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
28
Shear Strength, MPa 530
190 to 250
Tensile Strength: Ultimate (UTS), MPa 800
250 to 320
Tensile Strength: Yield (Proof), MPa 340
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
570
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1460
570
Melting Onset (Solidus), °C 1410
540
Specific Heat Capacity, J/kg-K 450
890
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 15
19

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 7.6
7.9
Embodied Energy, MJ/kg 110
140
Embodied Water, L/kg 300
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
1.1 to 1.6
Resilience: Unit (Modulus of Resilience), kJ/m3 280
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 26
25 to 32
Strength to Weight: Bending, points 23
32 to 38
Thermal Diffusivity, mm2/s 3.4
48
Thermal Shock Resistance, points 19
12 to 16

Alloy Composition

Aluminum (Al), % 0
79.1 to 85.8
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 24.3 to 37.1
0 to 1.2
Magnesium (Mg), % 0
0.7 to 1.3
Manganese (Mn), % 0 to 2.0
0 to 0.35
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
2.0 to 3.0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
11 to 13
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.35