MakeItFrom.com
Menu (ESC)

EN 1.4971 Stainless Steel vs. 384.0 Aluminum

EN 1.4971 stainless steel belongs to the iron alloys classification, while 384.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4971 stainless steel and the bottom bar is 384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
85
Elastic (Young's, Tensile) Modulus, GPa 210
74
Elongation at Break, % 34
2.5
Fatigue Strength, MPa 270
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
28
Shear Strength, MPa 530
200
Tensile Strength: Ultimate (UTS), MPa 800
330
Tensile Strength: Yield (Proof), MPa 340
170

Thermal Properties

Latent Heat of Fusion, J/g 300
550
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
580
Melting Onset (Solidus), °C 1410
530
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 13
96
Thermal Expansion, µm/m-K 15
21

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 7.6
7.4
Embodied Energy, MJ/kg 110
140
Embodied Water, L/kg 300
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 280
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 26
32
Strength to Weight: Bending, points 23
37
Thermal Diffusivity, mm2/s 3.4
39
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0
77.3 to 86.5
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
3.0 to 4.5
Iron (Fe), % 24.3 to 37.1
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0 to 0.5
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
10.5 to 12
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.35
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5