MakeItFrom.com
Menu (ESC)

EN 1.4971 Stainless Steel vs. 5019 Aluminum

EN 1.4971 stainless steel belongs to the iron alloys classification, while 5019 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4971 stainless steel and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
2.2 to 18
Fatigue Strength, MPa 270
100 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 530
170 to 210
Tensile Strength: Ultimate (UTS), MPa 800
280 to 360
Tensile Strength: Yield (Proof), MPa 340
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
540
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 7.6
9.0
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 280
110 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 26
29 to 38
Strength to Weight: Bending, points 23
35 to 42
Thermal Diffusivity, mm2/s 3.4
52
Thermal Shock Resistance, points 19
13 to 16

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.3
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0 to 0.2
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 24.3 to 37.1
0 to 0.5
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0 to 2.0
0.1 to 0.6
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15