MakeItFrom.com
Menu (ESC)

EN 1.4971 Stainless Steel vs. 6066 Aluminum

EN 1.4971 stainless steel belongs to the iron alloys classification, while 6066 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4971 stainless steel and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
7.8 to 17
Fatigue Strength, MPa 270
94 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 530
95 to 240
Tensile Strength: Ultimate (UTS), MPa 800
160 to 400
Tensile Strength: Yield (Proof), MPa 340
93 to 360

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 450
890
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 7.6
8.3
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 300
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
23 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 280
61 to 920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 26
16 to 39
Strength to Weight: Bending, points 23
23 to 43
Thermal Diffusivity, mm2/s 3.4
61
Thermal Shock Resistance, points 19
6.9 to 17

Alloy Composition

Aluminum (Al), % 0
93 to 97
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0 to 0.4
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0.7 to 1.2
Iron (Fe), % 24.3 to 37.1
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0 to 2.0
0.6 to 1.1
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0.9 to 1.8
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15