MakeItFrom.com
Menu (ESC)

EN 1.4971 Stainless Steel vs. 7005 Aluminum

EN 1.4971 stainless steel belongs to the iron alloys classification, while 7005 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4971 stainless steel and the bottom bar is 7005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
10 to 20
Fatigue Strength, MPa 270
100 to 190
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 530
120 to 230
Tensile Strength: Ultimate (UTS), MPa 800
200 to 400
Tensile Strength: Yield (Proof), MPa 340
95 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 13
140 to 170
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 7.6
8.3
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 300
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
32 to 57
Resilience: Unit (Modulus of Resilience), kJ/m3 280
65 to 850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 26
19 to 38
Strength to Weight: Bending, points 23
26 to 41
Thermal Diffusivity, mm2/s 3.4
54 to 65
Thermal Shock Resistance, points 19
8.7 to 18

Alloy Composition

Aluminum (Al), % 0
91 to 94.7
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0.060 to 0.2
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 24.3 to 37.1
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.8
Manganese (Mn), % 0 to 2.0
0.2 to 0.7
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.010 to 0.060
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0
0 to 0.15