MakeItFrom.com
Menu (ESC)

EN 1.4971 Stainless Steel vs. 711.0 Aluminum

EN 1.4971 stainless steel belongs to the iron alloys classification, while 711.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4971 stainless steel and the bottom bar is 711.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
70
Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 34
7.8
Fatigue Strength, MPa 270
100
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 800
220
Tensile Strength: Yield (Proof), MPa 340
140

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 450
860
Thermal Conductivity, W/m-K 13
160
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 7.6
7.9
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 300
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
15
Resilience: Unit (Modulus of Resilience), kJ/m3 280
140
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 26
20
Strength to Weight: Bending, points 23
26
Thermal Diffusivity, mm2/s 3.4
61
Thermal Shock Resistance, points 19
9.3

Alloy Composition

Aluminum (Al), % 0
89.8 to 92.7
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0.35 to 0.65
Iron (Fe), % 24.3 to 37.1
0.7 to 1.4
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15