MakeItFrom.com
Menu (ESC)

EN 1.4971 Stainless Steel vs. 850.0 Aluminum

EN 1.4971 stainless steel belongs to the iron alloys classification, while 850.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4971 stainless steel and the bottom bar is 850.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
45
Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 34
7.9
Fatigue Strength, MPa 270
59
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 530
100
Tensile Strength: Ultimate (UTS), MPa 800
140
Tensile Strength: Yield (Proof), MPa 340
76

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
370
Specific Heat Capacity, J/kg-K 450
850
Thermal Conductivity, W/m-K 13
180
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
14
Density, g/cm3 8.4
3.1
Embodied Carbon, kg CO2/kg material 7.6
8.5
Embodied Energy, MJ/kg 110
160
Embodied Water, L/kg 300
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 280
42
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 24
44
Strength to Weight: Axial, points 26
12
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 3.4
69
Thermal Shock Resistance, points 19
6.1

Alloy Composition

Aluminum (Al), % 0
88.3 to 93.1
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0.7 to 1.3
Iron (Fe), % 24.3 to 37.1
0 to 0.7
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0.7 to 1.3
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.0
0
Residuals, % 0
0 to 0.3