MakeItFrom.com
Menu (ESC)

EN 1.4971 Stainless Steel vs. C96400 Copper-nickel

EN 1.4971 stainless steel belongs to the iron alloys classification, while C96400 copper-nickel belongs to the copper alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4971 stainless steel and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 34
25
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
51
Tensile Strength: Ultimate (UTS), MPa 800
490
Tensile Strength: Yield (Proof), MPa 340
260

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1100
260
Melting Completion (Liquidus), °C 1460
1240
Melting Onset (Solidus), °C 1410
1170
Specific Heat Capacity, J/kg-K 450
400
Thermal Conductivity, W/m-K 13
28
Thermal Expansion, µm/m-K 15
15

Otherwise Unclassified Properties

Base Metal Price, % relative 70
45
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 7.6
5.9
Embodied Energy, MJ/kg 110
87
Embodied Water, L/kg 300
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
100
Resilience: Unit (Modulus of Resilience), kJ/m3 280
250
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
15
Strength to Weight: Bending, points 23
16
Thermal Diffusivity, mm2/s 3.4
7.8
Thermal Shock Resistance, points 19
17

Alloy Composition

Carbon (C), % 0.080 to 0.16
0 to 0.15
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
62.3 to 71.3
Iron (Fe), % 24.3 to 37.1
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
28 to 32
Niobium (Nb), % 0.75 to 1.3
0.5 to 1.5
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Tungsten (W), % 2.0 to 3.0
0
Residuals, % 0
0 to 0.5