MakeItFrom.com
Menu (ESC)

EN 1.4971 Stainless Steel vs. S17400 Stainless Steel

Both EN 1.4971 stainless steel and S17400 stainless steel are iron alloys. They have 52% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4971 stainless steel and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 34
11 to 21
Fatigue Strength, MPa 270
380 to 670
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 81
75
Shear Strength, MPa 530
570 to 830
Tensile Strength: Ultimate (UTS), MPa 800
910 to 1390
Tensile Strength: Yield (Proof), MPa 340
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 570
450
Maximum Temperature: Mechanical, °C 1100
850
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 13
17
Thermal Expansion, µm/m-K 15
11

Otherwise Unclassified Properties

Base Metal Price, % relative 70
14
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.7
Embodied Energy, MJ/kg 110
39
Embodied Water, L/kg 300
130

Common Calculations

PREN (Pitting Resistance) 38
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 280
880 to 4060
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
32 to 49
Strength to Weight: Bending, points 23
27 to 35
Thermal Diffusivity, mm2/s 3.4
4.5
Thermal Shock Resistance, points 19
30 to 46

Alloy Composition

Carbon (C), % 0.080 to 0.16
0 to 0.070
Chromium (Cr), % 20 to 22.5
15 to 17
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 24.3 to 37.1
70.4 to 78.9
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
3.0 to 5.0
Niobium (Nb), % 0.75 to 1.3
0.15 to 0.45
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Tungsten (W), % 2.0 to 3.0
0