MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. 1080 Aluminum

EN 1.4980 stainless steel belongs to the iron alloys classification, while 1080 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is 1080 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 17
4.6 to 40
Fatigue Strength, MPa 410
21 to 48
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 630
49 to 78
Tensile Strength: Ultimate (UTS), MPa 1030
72 to 130
Tensile Strength: Yield (Proof), MPa 680
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 13
230
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
61
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
200

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 6.0
8.3
Embodied Energy, MJ/kg 87
160
Embodied Water, L/kg 170
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
4.7 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
2.1 to 100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 36
7.4 to 14
Strength to Weight: Bending, points 28
14 to 22
Thermal Diffusivity, mm2/s 3.5
94
Thermal Shock Resistance, points 22
3.2 to 6.0

Alloy Composition

Aluminum (Al), % 0 to 0.35
99.8 to 100
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 49.2 to 58.5
0 to 0.15
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 1.0 to 2.0
0 to 0.020
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0 to 0.030
Vanadium (V), % 0.1 to 0.5
0 to 0.050
Zinc (Zn), % 0
0 to 0.030
Residuals, % 0
0 to 0.020