MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. 2014A Aluminum

EN 1.4980 stainless steel belongs to the iron alloys classification, while 2014A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is 2014A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 17
6.2 to 16
Fatigue Strength, MPa 410
93 to 150
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 630
130 to 290
Tensile Strength: Ultimate (UTS), MPa 1030
210 to 490
Tensile Strength: Yield (Proof), MPa 680
110 to 430

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 920
210
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
110

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 6.0
8.1
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 170
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
85 to 1300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 36
19 to 45
Strength to Weight: Bending, points 28
26 to 46
Thermal Diffusivity, mm2/s 3.5
55
Thermal Shock Resistance, points 22
9.0 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.35
90.8 to 95
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0 to 0.1
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 49.2 to 58.5
0 to 0.5
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 1.0 to 2.0
0.4 to 1.2
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0.5 to 0.9
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0 to 0.15
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15