MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. 2195 Aluminum

EN 1.4980 stainless steel belongs to the iron alloys classification, while 2195 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is 2195 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 17
9.3
Fatigue Strength, MPa 410
190
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 630
350
Tensile Strength: Ultimate (UTS), MPa 1030
590
Tensile Strength: Yield (Proof), MPa 680
560

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 920
210
Melting Completion (Liquidus), °C 1430
660
Melting Onset (Solidus), °C 1380
550
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
100

Otherwise Unclassified Properties

Base Metal Price, % relative 26
31
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 6.0
8.6
Embodied Energy, MJ/kg 87
160
Embodied Water, L/kg 170
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
54
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
2290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 36
55
Strength to Weight: Bending, points 28
53
Thermal Diffusivity, mm2/s 3.5
49
Thermal Shock Resistance, points 22
26

Alloy Composition

Aluminum (Al), % 0 to 0.35
91.9 to 94.9
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
3.7 to 4.3
Iron (Fe), % 49.2 to 58.5
0 to 0.15
Lithium (Li), % 0
0.8 to 1.2
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 1.0 to 2.0
0 to 0.25
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0 to 0.1
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.080 to 0.16
Residuals, % 0
0 to 0.15