MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. 295.0 Aluminum

EN 1.4980 stainless steel belongs to the iron alloys classification, while 295.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is 295.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 17
2.0 to 7.2
Fatigue Strength, MPa 410
44 to 55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 630
180 to 230
Tensile Strength: Ultimate (UTS), MPa 1030
230 to 280
Tensile Strength: Yield (Proof), MPa 680
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
530
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
100

Otherwise Unclassified Properties

Base Metal Price, % relative 26
10
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 6.0
7.9
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 170
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
5.2 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
77 to 340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 36
21 to 26
Strength to Weight: Bending, points 28
27 to 32
Thermal Diffusivity, mm2/s 3.5
54
Thermal Shock Resistance, points 22
9.8 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.35
91.4 to 95.3
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 49.2 to 58.5
0 to 1.0
Magnesium (Mg), % 0
0 to 0.030
Manganese (Mn), % 1.0 to 2.0
0 to 0.35
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0.7 to 1.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0 to 0.25
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15