MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. 359.0 Aluminum

EN 1.4980 stainless steel belongs to the iron alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 17
3.8 to 4.9
Fatigue Strength, MPa 410
100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 630
220 to 230
Tensile Strength: Ultimate (UTS), MPa 1030
340 to 350
Tensile Strength: Yield (Proof), MPa 680
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 300
530
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1380
570
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
120

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 6.0
8.0
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 170
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
450 to 540
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 36
37 to 38
Strength to Weight: Bending, points 28
42 to 43
Thermal Diffusivity, mm2/s 3.5
59
Thermal Shock Resistance, points 22
16 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.35
88.9 to 91
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 49.2 to 58.5
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 1.0 to 2.0
0 to 0.1
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
8.5 to 9.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0 to 0.2
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15