MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. 4007 Aluminum

EN 1.4980 stainless steel belongs to the iron alloys classification, while 4007 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is 4007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 17
5.1 to 23
Fatigue Strength, MPa 410
46 to 88
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 630
80 to 90
Tensile Strength: Ultimate (UTS), MPa 1030
130 to 160
Tensile Strength: Yield (Proof), MPa 680
50 to 120

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 13
170
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
140

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 6.0
8.1
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 170
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
7.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
18 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 36
12 to 15
Strength to Weight: Bending, points 28
20 to 23
Thermal Diffusivity, mm2/s 3.5
67
Thermal Shock Resistance, points 22
5.5 to 6.7

Alloy Composition

Aluminum (Al), % 0 to 0.35
94.1 to 97.6
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0.050 to 0.25
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 49.2 to 58.5
0.4 to 1.0
Magnesium (Mg), % 0
0 to 0.2
Manganese (Mn), % 1.0 to 2.0
0.8 to 1.5
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0.15 to 0.7
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
1.0 to 1.7
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0 to 0.1
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15