MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. 5110A Aluminum

EN 1.4980 stainless steel belongs to the iron alloys classification, while 5110A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is 5110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 17
4.5 to 28
Fatigue Strength, MPa 410
37 to 77
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 630
66 to 110
Tensile Strength: Ultimate (UTS), MPa 1030
100 to 190
Tensile Strength: Yield (Proof), MPa 680
32 to 170

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 920
180
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 13
220
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
57
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
190

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 6.0
8.3
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
6.8 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
7.6 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 36
10 to 19
Strength to Weight: Bending, points 28
18 to 27
Thermal Diffusivity, mm2/s 3.5
91
Thermal Shock Resistance, points 22
4.5 to 8.4

Alloy Composition

Aluminum (Al), % 0 to 0.35
98.5 to 99.8
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 49.2 to 58.5
0 to 0.25
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 1.0 to 2.0
0 to 0.2
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.030
Residuals, % 0
0 to 0.1