MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. EN 1.0108 Steel

Both EN 1.4980 stainless steel and EN 1.0108 steel are iron alloys. They have 55% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is EN 1.0108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
29
Fatigue Strength, MPa 410
150
Impact Strength: V-Notched Charpy, J 57
38
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 630
250
Tensile Strength: Ultimate (UTS), MPa 1030
380
Tensile Strength: Yield (Proof), MPa 680
200

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 920
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
50
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
2.1
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 6.0
1.5
Embodied Energy, MJ/kg 87
19
Embodied Water, L/kg 170
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
94
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 36
13
Strength to Weight: Bending, points 28
15
Thermal Diffusivity, mm2/s 3.5
13
Thermal Shock Resistance, points 22
12

Alloy Composition

Aluminum (Al), % 0 to 0.35
0.020 to 0.2
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0 to 0.13
Chromium (Cr), % 13.5 to 16
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 49.2 to 58.5
97.5 to 99.98
Manganese (Mn), % 1.0 to 2.0
0 to 0.7
Molybdenum (Mo), % 1.0 to 1.5
0 to 0.080
Nickel (Ni), % 24 to 27
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 1.9 to 2.3
0 to 0.040
Vanadium (V), % 0.1 to 0.5
0 to 0.020