MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. EN 1.4837 Stainless Steel

Both EN 1.4980 stainless steel and EN 1.4837 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is EN 1.4837 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
6.8
Fatigue Strength, MPa 410
120
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 75
78
Tensile Strength: Ultimate (UTS), MPa 1030
500
Tensile Strength: Yield (Proof), MPa 680
250

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Maximum Temperature: Corrosion, °C 780
440
Maximum Temperature: Mechanical, °C 920
1050
Melting Completion (Liquidus), °C 1430
1390
Melting Onset (Solidus), °C 1380
1350
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 13
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
20
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 6.0
3.7
Embodied Energy, MJ/kg 87
53
Embodied Water, L/kg 170
180

Common Calculations

PREN (Pitting Resistance) 19
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
29
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 36
18
Strength to Weight: Bending, points 28
18
Thermal Diffusivity, mm2/s 3.5
3.7
Thermal Shock Resistance, points 22
11

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0.3 to 0.5
Chromium (Cr), % 13.5 to 16
24 to 27
Iron (Fe), % 49.2 to 58.5
53.4 to 63.7
Manganese (Mn), % 1.0 to 2.0
0 to 2.0
Molybdenum (Mo), % 1.0 to 1.5
0 to 0.5
Nickel (Ni), % 24 to 27
11 to 14
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 1.0
1.0 to 2.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0