MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. EN AC-71100 Aluminum

EN 1.4980 stainless steel belongs to the iron alloys classification, while EN AC-71100 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is EN AC-71100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 17
1.1
Fatigue Strength, MPa 410
150
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 1030
260
Tensile Strength: Yield (Proof), MPa 680
230

Thermal Properties

Latent Heat of Fusion, J/g 300
490
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1430
580
Melting Onset (Solidus), °C 1380
520
Specific Heat Capacity, J/kg-K 470
860
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
97

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 6.0
7.4
Embodied Energy, MJ/kg 87
140
Embodied Water, L/kg 170
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
2.8
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 36
25
Strength to Weight: Bending, points 28
31
Thermal Shock Resistance, points 22
12

Alloy Composition

Aluminum (Al), % 0 to 0.35
78.7 to 83.3
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 49.2 to 58.5
0 to 0.3
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 1.0 to 2.0
0 to 0.15
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 1.9 to 2.3
0 to 0.15
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
9.0 to 10.5
Residuals, % 0
0 to 0.15