MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. SAE-AISI 1039 Steel

Both EN 1.4980 stainless steel and SAE-AISI 1039 steel are iron alloys. They have 55% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is SAE-AISI 1039 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
14 to 18
Fatigue Strength, MPa 410
230 to 370
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 630
380 to 420
Tensile Strength: Ultimate (UTS), MPa 1030
610 to 690
Tensile Strength: Yield (Proof), MPa 680
340 to 580

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 920
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
51
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 26
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.0
1.4
Embodied Energy, MJ/kg 87
18
Embodied Water, L/kg 170
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
88 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
310 to 890
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 36
22 to 24
Strength to Weight: Bending, points 28
20 to 22
Thermal Diffusivity, mm2/s 3.5
14
Thermal Shock Resistance, points 22
19 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0.37 to 0.44
Chromium (Cr), % 13.5 to 16
0
Iron (Fe), % 49.2 to 58.5
98.5 to 98.9
Manganese (Mn), % 1.0 to 2.0
0.7 to 1.0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0