MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. C14500 Copper

EN 1.4980 stainless steel belongs to the iron alloys classification, while C14500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is C14500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
12 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
43
Shear Strength, MPa 630
150 to 190
Tensile Strength: Ultimate (UTS), MPa 1030
220 to 330
Tensile Strength: Yield (Proof), MPa 680
69 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 920
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
360
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
94
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
95

Otherwise Unclassified Properties

Base Metal Price, % relative 26
33
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 6.0
2.6
Embodied Energy, MJ/kg 87
42
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
36 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
21 to 300
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 36
6.8 to 10
Strength to Weight: Bending, points 28
9.1 to 12
Thermal Diffusivity, mm2/s 3.5
100
Thermal Shock Resistance, points 22
8.0 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
99.2 to 99.596
Iron (Fe), % 49.2 to 58.5
0
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0.0040 to 0.012
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tellurium (Te), % 0
0.4 to 0.7
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0