MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. C19020 Copper

EN 1.4980 stainless steel belongs to the iron alloys classification, while C19020 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is C19020 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
2.3 to 5.7
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
44
Shear Strength, MPa 630
260 to 340
Tensile Strength: Ultimate (UTS), MPa 1030
440 to 590

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 920
200
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1380
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
190
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
50

Otherwise Unclassified Properties

Base Metal Price, % relative 26
31
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 6.0
2.8
Embodied Energy, MJ/kg 87
44
Embodied Water, L/kg 170
310

Common Calculations

Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 36
14 to 18
Strength to Weight: Bending, points 28
14 to 18
Thermal Diffusivity, mm2/s 3.5
55
Thermal Shock Resistance, points 22
16 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
95.7 to 99.19
Iron (Fe), % 49.2 to 58.5
0
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0.5 to 3.0
Phosphorus (P), % 0 to 0.025
0.010 to 0.2
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.3 to 0.9
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0
Residuals, % 0
0 to 0.2