MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. C41500 Brass

EN 1.4980 stainless steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
2.0 to 42
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
42
Shear Strength, MPa 630
220 to 360
Tensile Strength: Ultimate (UTS), MPa 1030
340 to 560
Tensile Strength: Yield (Proof), MPa 680
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 920
180
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1380
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
29

Otherwise Unclassified Properties

Base Metal Price, % relative 26
30
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 6.0
2.8
Embodied Energy, MJ/kg 87
45
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 36
11 to 18
Strength to Weight: Bending, points 28
12 to 17
Thermal Diffusivity, mm2/s 3.5
37
Thermal Shock Resistance, points 22
12 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 49.2 to 58.5
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 2.2
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5