MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. C51900 Bronze

EN 1.4980 stainless steel belongs to the iron alloys classification, while C51900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
14 to 29
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
42
Shear Strength, MPa 630
320 to 370
Tensile Strength: Ultimate (UTS), MPa 1030
380 to 620
Tensile Strength: Yield (Proof), MPa 680
390 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 920
180
Melting Completion (Liquidus), °C 1430
1040
Melting Onset (Solidus), °C 1380
930
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 13
66
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
14

Otherwise Unclassified Properties

Base Metal Price, % relative 26
33
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 6.0
3.2
Embodied Energy, MJ/kg 87
51
Embodied Water, L/kg 170
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
55 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
680 to 1450
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 36
12 to 19
Strength to Weight: Bending, points 28
13 to 18
Thermal Diffusivity, mm2/s 3.5
20
Thermal Shock Resistance, points 22
14 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
91.7 to 95
Iron (Fe), % 49.2 to 58.5
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0.030 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
5.0 to 7.0
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5