MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. C66300 Brass

EN 1.4980 stainless steel belongs to the iron alloys classification, while C66300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
2.3 to 22
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
42
Shear Strength, MPa 630
290 to 470
Tensile Strength: Ultimate (UTS), MPa 1030
460 to 810
Tensile Strength: Yield (Proof), MPa 680
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 920
180
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
1000
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 13
110
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
26

Otherwise Unclassified Properties

Base Metal Price, % relative 26
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 6.0
2.8
Embodied Energy, MJ/kg 87
46
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
710 to 2850
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 36
15 to 26
Strength to Weight: Bending, points 28
15 to 22
Thermal Diffusivity, mm2/s 3.5
32
Thermal Shock Resistance, points 22
16 to 28

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
84.5 to 87.5
Iron (Fe), % 49.2 to 58.5
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.025
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 3.0
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5