MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. C82600 Copper

EN 1.4980 stainless steel belongs to the iron alloys classification, while C82600 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
46
Tensile Strength: Ultimate (UTS), MPa 1030
570 to 1140
Tensile Strength: Yield (Proof), MPa 680
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 920
300
Melting Completion (Liquidus), °C 1430
950
Melting Onset (Solidus), °C 1380
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
19
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
20

Otherwise Unclassified Properties

Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 6.0
11
Embodied Energy, MJ/kg 87
180
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
430 to 4690
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 36
18 to 36
Strength to Weight: Bending, points 28
17 to 28
Thermal Diffusivity, mm2/s 3.5
37
Thermal Shock Resistance, points 22
19 to 39

Alloy Composition

Aluminum (Al), % 0 to 0.35
0 to 0.15
Beryllium (Be), % 0
2.3 to 2.6
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 13.5 to 16
0 to 0.1
Cobalt (Co), % 0
0.35 to 0.65
Copper (Cu), % 0
94.9 to 97.2
Iron (Fe), % 49.2 to 58.5
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0 to 0.2
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0.2 to 0.35
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 1.9 to 2.3
0 to 0.12
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5