MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. S31260 Stainless Steel

Both EN 1.4980 stainless steel and S31260 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
23
Fatigue Strength, MPa 410
370
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 75
80
Shear Strength, MPa 630
500
Tensile Strength: Ultimate (UTS), MPa 1030
790
Tensile Strength: Yield (Proof), MPa 680
540

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 780
450
Maximum Temperature: Mechanical, °C 920
1100
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
16
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
20
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.0
3.9
Embodied Energy, MJ/kg 87
53
Embodied Water, L/kg 170
180

Common Calculations

PREN (Pitting Resistance) 19
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
160
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
720
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 36
28
Strength to Weight: Bending, points 28
24
Thermal Diffusivity, mm2/s 3.5
4.3
Thermal Shock Resistance, points 22
22

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0 to 0.030
Chromium (Cr), % 13.5 to 16
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 49.2 to 58.5
59.6 to 67.6
Manganese (Mn), % 1.0 to 2.0
0 to 1.0
Molybdenum (Mo), % 1.0 to 1.5
2.5 to 3.5
Nickel (Ni), % 24 to 27
5.5 to 7.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 1.9 to 2.3
0
Tungsten (W), % 0
0.1 to 0.5
Vanadium (V), % 0.1 to 0.5
0