MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. S33425 Stainless Steel

Both EN 1.4980 stainless steel and S33425 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is S33425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17
45
Fatigue Strength, MPa 410
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
79
Shear Strength, MPa 630
400
Tensile Strength: Ultimate (UTS), MPa 1030
580
Tensile Strength: Yield (Proof), MPa 680
230

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 780
500
Maximum Temperature: Mechanical, °C 920
1100
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
27
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 6.0
5.1
Embodied Energy, MJ/kg 87
71
Embodied Water, L/kg 170
190

Common Calculations

PREN (Pitting Resistance) 19
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 36
20
Strength to Weight: Bending, points 28
19
Thermal Diffusivity, mm2/s 3.5
3.7
Thermal Shock Resistance, points 22
13

Alloy Composition

Aluminum (Al), % 0 to 0.35
0.15 to 0.6
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0 to 0.080
Chromium (Cr), % 13.5 to 16
21 to 23
Iron (Fe), % 49.2 to 58.5
47.2 to 56.7
Manganese (Mn), % 1.0 to 2.0
0 to 1.5
Molybdenum (Mo), % 1.0 to 1.5
2.0 to 3.0
Nickel (Ni), % 24 to 27
20 to 23
Phosphorus (P), % 0 to 0.025
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 1.9 to 2.3
0.15 to 0.6
Vanadium (V), % 0.1 to 0.5
0