MakeItFrom.com
Menu (ESC)

EN 1.4980 Stainless Steel vs. S44800 Stainless Steel

Both EN 1.4980 stainless steel and S44800 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4980 stainless steel and the bottom bar is S44800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 17
23
Fatigue Strength, MPa 410
300
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 75
82
Shear Strength, MPa 630
370
Tensile Strength: Ultimate (UTS), MPa 1030
590
Tensile Strength: Yield (Proof), MPa 680
450

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 780
460
Maximum Temperature: Mechanical, °C 920
1100
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 26
19
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.0
3.8
Embodied Energy, MJ/kg 87
52
Embodied Water, L/kg 170
190

Common Calculations

PREN (Pitting Resistance) 19
42
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1180
480
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 36
21
Strength to Weight: Bending, points 28
20
Thermal Diffusivity, mm2/s 3.5
4.6
Thermal Shock Resistance, points 22
19

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.030 to 0.080
0 to 0.010
Chromium (Cr), % 13.5 to 16
28 to 30
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 49.2 to 58.5
62.6 to 66.5
Manganese (Mn), % 1.0 to 2.0
0 to 0.3
Molybdenum (Mo), % 1.0 to 1.5
3.5 to 4.2
Nickel (Ni), % 24 to 27
2.0 to 2.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 1.9 to 2.3
0
Vanadium (V), % 0.1 to 0.5
0