MakeItFrom.com
Menu (ESC)

EN 1.4981 Stainless Steel vs. C83300 Brass

EN 1.4981 stainless steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4981 stainless steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
35
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 610
220
Tensile Strength: Yield (Proof), MPa 240
69

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 940
180
Melting Completion (Liquidus), °C 1440
1060
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
33

Otherwise Unclassified Properties

Base Metal Price, % relative 25
30
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 4.8
2.7
Embodied Energy, MJ/kg 67
44
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
60
Resilience: Unit (Modulus of Resilience), kJ/m3 150
21
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 21
6.9
Strength to Weight: Bending, points 20
9.2
Thermal Diffusivity, mm2/s 4.3
48
Thermal Shock Resistance, points 14
7.9

Alloy Composition

Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
92 to 94
Iron (Fe), % 59.6 to 66.7
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
0
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0.3 to 0.6
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7