MakeItFrom.com
Menu (ESC)

EN 1.4983 Stainless Steel vs. EN 1.4507 Stainless Steel

Both EN 1.4983 stainless steel and EN 1.4507 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4983 stainless steel and the bottom bar is EN 1.4507 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
25
Fatigue Strength, MPa 200
410
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
80
Shear Strength, MPa 430
530
Tensile Strength: Ultimate (UTS), MPa 630
840
Tensile Strength: Yield (Proof), MPa 230
590

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 520
450
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
21
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
4.0
Embodied Energy, MJ/kg 56
55
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 24
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
850
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
30
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 14
23

Alloy Composition

Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.040 to 0.080
0 to 0.030
Chromium (Cr), % 16 to 18
24 to 26
Copper (Cu), % 0
1.0 to 2.5
Iron (Fe), % 61.8 to 69.6
56.4 to 65.8
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 2.5
3.0 to 4.0
Nickel (Ni), % 12 to 14
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.75
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.4 to 0.8
0