MakeItFrom.com
Menu (ESC)

EN 1.4983 Stainless Steel vs. EN 1.4578 Stainless Steel

Both EN 1.4983 stainless steel and EN 1.4578 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have a very high 97% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4983 stainless steel and the bottom bar is EN 1.4578 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
51
Fatigue Strength, MPa 200
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 430
400
Tensile Strength: Ultimate (UTS), MPa 630
550
Tensile Strength: Yield (Proof), MPa 230
200

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 520
410
Maximum Temperature: Mechanical, °C 940
930
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 4.1
3.7
Embodied Energy, MJ/kg 56
51
Embodied Water, L/kg 150
160

Common Calculations

PREN (Pitting Resistance) 24
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
220
Resilience: Unit (Modulus of Resilience), kJ/m3 140
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 4.0
3.9
Thermal Shock Resistance, points 14
12

Alloy Composition

Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.040 to 0.080
0 to 0.040
Chromium (Cr), % 16 to 18
16.5 to 17.5
Copper (Cu), % 0
3.0 to 3.5
Iron (Fe), % 61.8 to 69.6
62.3 to 68.5
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 2.5
2.0 to 2.5
Nickel (Ni), % 12 to 14
10 to 11
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.4 to 0.8
0