MakeItFrom.com
Menu (ESC)

EN 1.4983 Stainless Steel vs. SAE-AISI 4028 Steel

Both EN 1.4983 stainless steel and SAE-AISI 4028 steel are iron alloys. They have 67% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4983 stainless steel and the bottom bar is SAE-AISI 4028 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
150 to 190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
14 to 23
Fatigue Strength, MPa 200
180 to 330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 430
310 to 380
Tensile Strength: Ultimate (UTS), MPa 630
490 to 630
Tensile Strength: Yield (Proof), MPa 230
260 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
1.5
Embodied Energy, MJ/kg 56
19
Embodied Water, L/kg 150
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
81 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 140
180 to 720
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
17 to 22
Strength to Weight: Bending, points 21
18 to 21
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 14
16 to 20

Alloy Composition

Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.040 to 0.080
0.25 to 0.3
Chromium (Cr), % 16 to 18
0
Iron (Fe), % 61.8 to 69.6
98.1 to 98.7
Manganese (Mn), % 0 to 2.0
0.7 to 0.9
Molybdenum (Mo), % 2.0 to 2.5
0.2 to 0.3
Nickel (Ni), % 12 to 14
0
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 0.75
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0.035 to 0.050
Titanium (Ti), % 0.4 to 0.8
0