MakeItFrom.com
Menu (ESC)

EN 1.4983 Stainless Steel vs. C84800 Brass

EN 1.4983 stainless steel belongs to the iron alloys classification, while C84800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4983 stainless steel and the bottom bar is C84800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 40
18
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
39
Tensile Strength: Ultimate (UTS), MPa 630
230
Tensile Strength: Yield (Proof), MPa 230
100

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 940
150
Melting Completion (Liquidus), °C 1440
950
Melting Onset (Solidus), °C 1400
830
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 15
72
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
17

Otherwise Unclassified Properties

Base Metal Price, % relative 19
27
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 4.1
2.8
Embodied Energy, MJ/kg 56
46
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
34
Resilience: Unit (Modulus of Resilience), kJ/m3 140
53
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
7.3
Strength to Weight: Bending, points 21
9.6
Thermal Diffusivity, mm2/s 4.0
23
Thermal Shock Resistance, points 14
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Boron (B), % 0.0015 to 0.0060
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
75 to 77
Iron (Fe), % 61.8 to 69.6
0 to 0.4
Lead (Pb), % 0
5.5 to 7.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 12 to 14
0 to 1.0
Phosphorus (P), % 0 to 0.035
0 to 1.5
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0.4 to 0.8
0
Zinc (Zn), % 0
13 to 17
Residuals, % 0
0 to 0.7