MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. 6105 Aluminum

EN 1.4986 stainless steel belongs to the iron alloys classification, while 6105 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is 6105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 18
9.0 to 16
Fatigue Strength, MPa 350
95 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 460
120 to 170
Tensile Strength: Ultimate (UTS), MPa 750
190 to 280
Tensile Strength: Yield (Proof), MPa 560
120 to 270

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 940
160
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1400
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
180 to 190
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
46 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.3
Embodied Energy, MJ/kg 67
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
25 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 790
100 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 26
20 to 29
Strength to Weight: Bending, points 23
28 to 35
Thermal Diffusivity, mm2/s 4.0
72 to 79
Thermal Shock Resistance, points 16
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
97.2 to 99
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 59.4 to 66.6
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.8
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
0
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.3 to 0.6
0.6 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15