MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. 8176 Aluminum

EN 1.4986 stainless steel belongs to the iron alloys classification, while 8176 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is 8176 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 18
15
Fatigue Strength, MPa 350
59
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 460
70
Tensile Strength: Ultimate (UTS), MPa 750
160
Tensile Strength: Yield (Proof), MPa 560
95

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1450
660
Melting Onset (Solidus), °C 1400
650
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
61
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
200

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.8
8.2
Embodied Energy, MJ/kg 67
150
Embodied Water, L/kg 150
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
21
Resilience: Unit (Modulus of Resilience), kJ/m3 790
66
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 26
16
Strength to Weight: Bending, points 23
24
Thermal Diffusivity, mm2/s 4.0
93
Thermal Shock Resistance, points 16
7.0

Alloy Composition

Aluminum (Al), % 0
98.6 to 99.6
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 59.4 to 66.6
0.4 to 1.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
0
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.3 to 0.6
0.030 to 0.15
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15