MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. 850.0 Aluminum

EN 1.4986 stainless steel belongs to the iron alloys classification, while 850.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is 850.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
45
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 18
7.9
Fatigue Strength, MPa 350
59
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 460
100
Tensile Strength: Ultimate (UTS), MPa 750
140
Tensile Strength: Yield (Proof), MPa 560
76

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 940
190
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1400
370
Specific Heat Capacity, J/kg-K 470
850
Thermal Conductivity, W/m-K 15
180
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
47
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 25
14
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 4.8
8.5
Embodied Energy, MJ/kg 67
160
Embodied Water, L/kg 150
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 790
42
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 24
44
Strength to Weight: Axial, points 26
12
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 4.0
69
Thermal Shock Resistance, points 16
6.1

Alloy Composition

Aluminum (Al), % 0
88.3 to 93.1
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
0.7 to 1.3
Iron (Fe), % 59.4 to 66.6
0 to 0.7
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
0.7 to 1.3
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.3 to 0.6
0 to 0.7
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Residuals, % 0
0 to 0.3