MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. AISI 301L Stainless Steel

Both EN 1.4986 stainless steel and AISI 301L stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
210 to 320
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
22 to 50
Fatigue Strength, MPa 350
240 to 530
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 460
440 to 660
Tensile Strength: Ultimate (UTS), MPa 750
620 to 1040
Tensile Strength: Yield (Proof), MPa 560
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 520
410
Maximum Temperature: Mechanical, °C 940
890
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 25
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
2.7
Embodied Energy, MJ/kg 67
39
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 22
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 790
160 to 1580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
22 to 37
Strength to Weight: Bending, points 23
21 to 29
Thermal Diffusivity, mm2/s 4.0
4.1
Thermal Shock Resistance, points 16
14 to 24

Alloy Composition

Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0 to 0.030
Chromium (Cr), % 15.5 to 17.5
16 to 18
Iron (Fe), % 59.4 to 66.6
70.7 to 78
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
6.0 to 8.0
Niobium (Nb), % 0.4 to 1.2
0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030