MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. ASTM A369 Grade FP91

Both EN 1.4986 stainless steel and ASTM A369 grade FP91 are iron alloys. They have 74% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 18
19
Fatigue Strength, MPa 350
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 460
410
Tensile Strength: Ultimate (UTS), MPa 750
670
Tensile Strength: Yield (Proof), MPa 560
460

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Mechanical, °C 940
600
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
10

Otherwise Unclassified Properties

Base Metal Price, % relative 25
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
2.6
Embodied Energy, MJ/kg 67
37
Embodied Water, L/kg 150
88

Common Calculations

PREN (Pitting Resistance) 22
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 790
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 16
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0.080 to 0.12
Chromium (Cr), % 15.5 to 17.5
8.0 to 9.5
Iron (Fe), % 59.4 to 66.6
87.3 to 90.3
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 1.6 to 2.0
0.85 to 1.1
Nickel (Ni), % 15.5 to 17.5
0 to 0.4
Niobium (Nb), % 0.4 to 1.2
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0.3 to 0.6
0.2 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010