MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. EN AC-21200 Aluminum

EN 1.4986 stainless steel belongs to the iron alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 18
3.9 to 6.2
Fatigue Strength, MPa 350
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 750
410 to 440
Tensile Strength: Yield (Proof), MPa 560
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1450
660
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 25
10
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 4.8
8.0
Embodied Energy, MJ/kg 67
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 790
500 to 930
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 26
38 to 40
Strength to Weight: Bending, points 23
41 to 43
Thermal Diffusivity, mm2/s 4.0
49
Thermal Shock Resistance, points 16
18 to 19

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.7
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 59.4 to 66.6
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0 to 1.5
0.2 to 0.5
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
0 to 0.050
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.3 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1