MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. EN-MC21120 Magnesium

EN 1.4986 stainless steel belongs to the iron alloys classification, while EN-MC21120 magnesium belongs to the magnesium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is EN-MC21120 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
63 to 75
Elastic (Young's, Tensile) Modulus, GPa 200
46
Elongation at Break, % 18
2.2 to 6.7
Fatigue Strength, MPa 350
84 to 96
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
18
Shear Strength, MPa 460
110 to 160
Tensile Strength: Ultimate (UTS), MPa 750
200 to 270
Tensile Strength: Yield (Proof), MPa 560
130 to 170

Thermal Properties

Latent Heat of Fusion, J/g 290
350
Maximum Temperature: Mechanical, °C 940
130
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1400
490
Specific Heat Capacity, J/kg-K 470
990
Thermal Conductivity, W/m-K 15
76
Thermal Expansion, µm/m-K 17
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
59

Otherwise Unclassified Properties

Base Metal Price, % relative 25
12
Density, g/cm3 7.9
1.7
Embodied Carbon, kg CO2/kg material 4.8
22
Embodied Energy, MJ/kg 67
160
Embodied Water, L/kg 150
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
5.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 790
180 to 320
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
69
Strength to Weight: Axial, points 26
31 to 43
Strength to Weight: Bending, points 23
43 to 53
Thermal Diffusivity, mm2/s 4.0
44
Thermal Shock Resistance, points 16
11 to 16

Alloy Composition

Aluminum (Al), % 0
8.3 to 9.7
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
0 to 0.030
Iron (Fe), % 59.4 to 66.6
0 to 0.0050
Magnesium (Mg), % 0
88.6 to 91.3
Manganese (Mn), % 0 to 1.5
0.1 to 0.5
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
0 to 0.0020
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.3 to 0.6
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0.35 to 1.0
Residuals, % 0
0 to 0.010