MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. Nickel 890

EN 1.4986 stainless steel belongs to the iron alloys classification, while nickel 890 belongs to the nickel alloys. They have 62% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
39
Fatigue Strength, MPa 350
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 460
400
Tensile Strength: Ultimate (UTS), MPa 750
590
Tensile Strength: Yield (Proof), MPa 560
230

Thermal Properties

Latent Heat of Fusion, J/g 290
330
Maximum Temperature: Mechanical, °C 940
1000
Melting Completion (Liquidus), °C 1450
1390
Melting Onset (Solidus), °C 1400
1340
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 25
47
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 4.8
8.2
Embodied Energy, MJ/kg 67
120
Embodied Water, L/kg 150
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 790
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 26
20
Strength to Weight: Bending, points 23
19
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0
0.050 to 0.6
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0.060 to 0.14
Chromium (Cr), % 15.5 to 17.5
23.5 to 28.5
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 59.4 to 66.6
17.3 to 33.9
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 1.6 to 2.0
1.0 to 2.0
Nickel (Ni), % 15.5 to 17.5
40 to 45
Niobium (Nb), % 0.4 to 1.2
0.2 to 1.0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.3 to 0.6
1.0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0
0.15 to 0.6