MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. C19700 Copper

EN 1.4986 stainless steel belongs to the iron alloys classification, while C19700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 18
2.4 to 13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 460
240 to 300
Tensile Strength: Ultimate (UTS), MPa 750
400 to 530
Tensile Strength: Yield (Proof), MPa 560
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 940
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
250
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 25
30
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.8
2.6
Embodied Energy, MJ/kg 67
41
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 790
460 to 1160
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26
12 to 16
Strength to Weight: Bending, points 23
14 to 16
Thermal Diffusivity, mm2/s 4.0
73
Thermal Shock Resistance, points 16
14 to 19

Alloy Composition

Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
97.4 to 99.59
Iron (Fe), % 59.4 to 66.6
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 1.5
0 to 0.050
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
0 to 0.050
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0.1 to 0.4
Silicon (Si), % 0.3 to 0.6
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2