MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. C63000 Bronze

EN 1.4986 stainless steel belongs to the iron alloys classification, while C63000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is C63000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 18
7.9 to 15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 460
400 to 470
Tensile Strength: Ultimate (UTS), MPa 750
660 to 790
Tensile Strength: Yield (Proof), MPa 560
330 to 390

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 940
230
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 25
29
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 4.8
3.5
Embodied Energy, MJ/kg 67
57
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
47 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 790
470 to 640
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 26
22 to 26
Strength to Weight: Bending, points 23
20 to 23
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 16
23 to 27

Alloy Composition

Aluminum (Al), % 0
9.0 to 11
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
76.8 to 85
Iron (Fe), % 59.4 to 66.6
2.0 to 4.0
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
4.0 to 5.5
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.3 to 0.6
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5