MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. C83600 Ounce Metal

EN 1.4986 stainless steel belongs to the iron alloys classification, while C83600 ounce metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is C83600 ounce metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 18
21
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 750
250
Tensile Strength: Yield (Proof), MPa 560
120

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 940
160
Melting Completion (Liquidus), °C 1450
1010
Melting Onset (Solidus), °C 1400
850
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 15
72
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
15

Otherwise Unclassified Properties

Base Metal Price, % relative 25
31
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 4.8
3.1
Embodied Energy, MJ/kg 67
50
Embodied Water, L/kg 150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
43
Resilience: Unit (Modulus of Resilience), kJ/m3 790
70
Stiffness to Weight: Axial, points 14
6.7
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26
7.9
Strength to Weight: Bending, points 23
10
Thermal Diffusivity, mm2/s 4.0
22
Thermal Shock Resistance, points 16
9.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 59.4 to 66.6
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
0 to 1.0
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0.3 to 0.6
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.7