MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. C87800 Brass

EN 1.4986 stainless steel belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 18
25
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 750
590
Tensile Strength: Yield (Proof), MPa 560
350

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1450
920
Melting Onset (Solidus), °C 1400
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 25
27
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 4.8
2.7
Embodied Energy, MJ/kg 67
44
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
130
Resilience: Unit (Modulus of Resilience), kJ/m3 790
540
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
20
Strength to Weight: Bending, points 23
19
Thermal Diffusivity, mm2/s 4.0
8.3
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
80 to 84.2
Iron (Fe), % 59.4 to 66.6
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.5
0 to 0.15
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
0 to 0.2
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.010
Silicon (Si), % 0.3 to 0.6
3.8 to 4.2
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5