MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. C96300 Copper-nickel

EN 1.4986 stainless steel belongs to the iron alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
150
Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 18
11
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
49
Tensile Strength: Ultimate (UTS), MPa 750
580
Tensile Strength: Yield (Proof), MPa 560
430

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 940
240
Melting Completion (Liquidus), °C 1450
1200
Melting Onset (Solidus), °C 1400
1150
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 15
37
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 25
42
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.8
5.1
Embodied Energy, MJ/kg 67
76
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
59
Resilience: Unit (Modulus of Resilience), kJ/m3 790
720
Stiffness to Weight: Axial, points 14
8.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
18
Strength to Weight: Bending, points 23
17
Thermal Diffusivity, mm2/s 4.0
10
Thermal Shock Resistance, points 16
20

Alloy Composition

Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0 to 0.15
Chromium (Cr), % 15.5 to 17.5
0
Copper (Cu), % 0
72.3 to 80.8
Iron (Fe), % 59.4 to 66.6
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.5
0.25 to 1.5
Molybdenum (Mo), % 1.6 to 2.0
0
Nickel (Ni), % 15.5 to 17.5
18 to 22
Niobium (Nb), % 0.4 to 1.2
0.5 to 1.5
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0.3 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Residuals, % 0
0 to 0.5