MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. N10675 Nickel

EN 1.4986 stainless steel belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
220
Elongation at Break, % 18
47
Fatigue Strength, MPa 350
350
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
85
Shear Strength, MPa 460
610
Tensile Strength: Ultimate (UTS), MPa 750
860
Tensile Strength: Yield (Proof), MPa 560
400

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 940
910
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 25
80
Density, g/cm3 7.9
9.3
Embodied Carbon, kg CO2/kg material 4.8
16
Embodied Energy, MJ/kg 67
210
Embodied Water, L/kg 150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
330
Resilience: Unit (Modulus of Resilience), kJ/m3 790
350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 26
26
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.0
3.1
Thermal Shock Resistance, points 16
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0 to 0.010
Chromium (Cr), % 15.5 to 17.5
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 59.4 to 66.6
1.0 to 3.0
Manganese (Mn), % 0 to 1.5
0 to 3.0
Molybdenum (Mo), % 1.6 to 2.0
27 to 32
Nickel (Ni), % 15.5 to 17.5
51.3 to 71
Niobium (Nb), % 0.4 to 1.2
0 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0.3 to 0.6
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1