MakeItFrom.com
Menu (ESC)

EN 1.4986 Stainless Steel vs. S42035 Stainless Steel

Both EN 1.4986 stainless steel and S42035 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4986 stainless steel and the bottom bar is S42035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 18
18
Fatigue Strength, MPa 350
260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 460
390
Tensile Strength: Ultimate (UTS), MPa 750
630
Tensile Strength: Yield (Proof), MPa 560
430

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 520
470
Maximum Temperature: Mechanical, °C 940
810
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 25
9.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.8
2.4
Embodied Energy, MJ/kg 67
34
Embodied Water, L/kg 150
110

Common Calculations

PREN (Pitting Resistance) 22
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 790
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 26
22
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 4.0
7.2
Thermal Shock Resistance, points 16
22

Alloy Composition

Boron (B), % 0.050 to 0.1
0
Carbon (C), % 0.040 to 0.1
0 to 0.080
Chromium (Cr), % 15.5 to 17.5
13.5 to 15.5
Iron (Fe), % 59.4 to 66.6
78.1 to 85
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 1.6 to 2.0
0.2 to 1.2
Nickel (Ni), % 15.5 to 17.5
1.0 to 2.5
Niobium (Nb), % 0.4 to 1.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.3 to 0.5